Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(2-2): 025203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491694

ABSTRACT

An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.16 MJ of total fusion yield, producing a target gain G=1.5±0.1 exceeding unity for the first time in a laboratory experiment [Phys. Rev. E 109, 025204 (2024)10.1103/PhysRevE.109.025204]. Herein we describe the experimental evidence for the increased drive on the capsule using additional laser energy and control over known degradation mechanisms, which are critical to achieving high performance. Improved fuel compression relative to previous megajoule-yield experiments is observed. Novel signatures of the ignition and burn propagation to high yield can now be studied in the laboratory for the first time.

2.
Rev Sci Instrum ; 94(2): 021102, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36859044

ABSTRACT

During the past decade, a number of diagnostic instruments have been developed that utilize electron pulse-dilation to achieve temporal resolution in the 5-30 ps range. These development efforts were motivated by the need for advanced diagnostics for high-energy density physics experiments around the world. The new instruments include single- and multi-frame gated imagers and non-imaging detectors that record continuous data streams. Electron pulse-dilation provides high-speed detection capability by converting incoming signals into a free electron cloud and manipulating the electron signal with electric and magnetic fields. Here, we discuss design details and applications of these instruments along with issues and challenges associated with employing the electron pulse-dilation technique. Additionally, methods to characterize instrument performance and improve tolerance to gamma and neutron background radiation are discussed.

3.
Rev Sci Instrum ; 93(11): 113528, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461449

ABSTRACT

In the dynamic environment of burning, thermonuclear deuterium-tritium plasmas, diagnosing the time-resolved neutron energy spectrum is of critical importance. Strategies exist for this diagnosis in magnetic confinement fusion plasmas, which presently have a lifetime of ∼1012 longer than inertial confinement fusion (ICF) plasmas. Here, we present a novel concept for a simple, precise, and scale-able diagnostic to measure time-resolved neutron spectra in ICF plasmas. The concept leverages general tomographic reconstruction techniques adapted to time-of-flight parameter space, and then employs an updated Monte Carlo algorithm and National Ignition Facility-relevant constraints to reconstruct the time-evolving neutron energy spectrum. Reconstructed spectra of the primary 14.028 MeV nDT peak are in good agreement with the exact synthetic spectra. The technique is also used to reconstruct the time-evolving downscattered spectrum, although the present implementation shows significantly more error.

4.
Rev Sci Instrum ; 93(11): 113536, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461534

ABSTRACT

A concept for using an intermediate distance (0.3-3.0 m) neutron time-of-flight (nToF) to provide a constraint on the measurement of the time-dependence of ion temperature in inertial confinement fusion implosions is presented. Simulated nToF signals at different distances are generated and, with a priori knowledge of the burn-averaged quantities and burn history, analyzed to determine requirements for a future detector. Results indicate a signal-to-noise ratio >50 and time resolution <20 ps to constrain the ion temperature gradient to ∼±25% (0.5 keV/100 ps).

5.
Rev Sci Instrum ; 93(8): 083516, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050109

ABSTRACT

The hardened single line of sight camera has been recently characterized in preparation for its deployment on the National Ignition Facility. The latest creation based on the pulse-dilation technology leads to many new features and improvements over the previous-generation cameras to provide better quality measurements of inertial confinement fusion experiments, including during high neutron yield implosions. Here, we present the characterization data that illustrate the main performance features of this instrument, such as extended dynamic range and adjustable internal magnification, leading to improved spatial resolution.

6.
Rev Sci Instrum ; 89(11): 113508, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501287

ABSTRACT

The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the deuterium-tritium-neutron spectrum from inertial confinement fusion implosions at the National Ignition Facility. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn. The absolute neutron spectrum in the energy range of 12-16 MeV will be measured with high accuracy (∼5%), unprecedented energy resolution (∼100 keV) and, for the first time ever, time resolution (∼20 ps). Crucial to the design of the system is a CD conversion foil for the production of recoil deuterons positioned as close to the implosion as possible. The foil-on-hohlraum technique has been demonstrated by placing a 1-mm-diameter, 40-µm-thick CD foil on the hohlraum diagnostic band along the line-of-sight of the current time-integrated MRS system, which measured the recoil deuterons. In addition to providing validation of the foil-on-hohlraum technique for the MRSt design, substantial improvement of the MRS energy resolution has been demonstrated.

7.
Rev Sci Instrum ; 89(10): 10I137, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399690

ABSTRACT

A new ultra-fast photomultiplier tube and associated drivers have been developed for use in the next generation of gamma-ray high pressure gas Cherenkov detectors for inertial confinement fusion experiments at the National Ignition Facility. Pulse-dilation technology has been applied to a standard micro-channel-plate-based photomultiplier tube to improve the temporal response by about 10×. The tube has been packaged suitably for deployment on the National Ignition Facility, and remote electronics have been designed to deliver the required non-linear waveforms to the pulse dilation electrode. This is achieved with an avalanche pulse generator system capable of generating fast arbitrary waveforms over the useful parameter space. The pulse is delivered via fast impedance-matching transformers and isolators, allowing the cathode to be ramped on a sub-nanosecond time scale between two high voltages in a controlled non-linear manner. This results in near linear pulse dilation over several ns. The device has a built-in fiducial system that allows easy calibration and testing with fiber optic laser sources. Results are presented demonstrating the greatly improved response time and other parameters of the device.

8.
Rev Sci Instrum ; 89(10): 10G123, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399697

ABSTRACT

A new generation of fast-gated x-ray framing cameras have been developed that are capable of capturing multiple frames along a single line-of-sight with 30 ps temporal resolution. The instruments are constructed by integrating pulse-dilation electron imaging with burst mode hybrid-complimentary metal-oxide-semiconductor sensors. Two such instruments have been developed, characterized, and fielded at the National Ignition Facility and the OMEGA laser. These instruments are particularly suited for advanced x-ray imaging applications in Inertial Confinement Fusion and High energy density experiments. Here, we discuss the system architecture and the techniques required for tuning the instruments to achieve optimal performance. Characterization results are also presented along with planned future improvements to the design.

9.
Rev Sci Instrum ; 89(10): 10G117, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399700

ABSTRACT

The single-line-of-sight, time-resolved x-ray imager (SLOS-TRXI) on OMEGA is one of a new generation of fast-gated x-ray cameras comprising an electron pulse-dilation imager and a nanosecond-gated, burst-mode, hybrid complementary metal-oxide semiconductor sensor. SLOS-TRXI images the core of imploded cryogenic deuterium-tritium shells in inertial confinement fusion experiments in the ∼4- to 9-keV photon energy range with a pinhole imager onto a photocathode. The diagnostic is mounted on a fixed port almost perpendicular to a 16-channel, framing-camera-based, time-resolved Kirkpatrick-Baez microscope, providing a second time-gated line of sight for hot-spot imaging on OMEGA. SLOS-TRXI achieves ∼40-ps temporal resolution and better than 10-µm spatial resolution. Shots with neutron yields of up to 1 × 1014 were taken without observed neutron-induced background signal. The implosion images from SLOS-TRXI show the evolution of the stagnating core.

10.
Rev Sci Instrum ; 89(10): 10G125, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399712

ABSTRACT

Crystal x-ray imaging is frequently used in inertial confinement fusion and laser-plasma interaction applications as it has advantages compared to pinhole imaging, such as higher signal throughput, better achievable spatial resolution, and chromatic selection. However, currently used x-ray detectors are only able to obtain a single time resolved image per crystal. The dilation aided single-line-of-sight x-ray camera described here was designed for the National Ignition Facility (NIF) and combines two recent diagnostic developments, the pulse dilation principle used in the dilation x-ray imager and a ns-scale multi-frame camera that uses a hold and readout circuit for each pixel. This enables multiple images to be taken from a single-line-of-sight with high spatial and temporal resolution. At the moment, the instrument can record two single-line-of-sight images with spatial and temporal resolution of 35 µm and down to 35 ps, respectively, with a planned upgrade doubling the number of images to four. Here we present the dilation aided single-line-of-sight camera for the NIF, including the x-ray characterization measurements obtained at the COMET laser, as well as the results from the initial timing shot on the NIF.

11.
Rev Sci Instrum ; 89(10): 10I146, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399731

ABSTRACT

The Cherenkov mechanism used in Gas Cherenkov Detectors (GCDs) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic at the National Ignition Facility (NIF), has been limited by the current state-of-the-art photomultiplier tube technology to ∼100 ps. The soon-to-be deployed Pulse Dilation Photomultiplier Tube (PD-PMT) at NIF will allow for temporal resolution comparable to that of the gas cell or ∼10 ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurements of reaction history and ablator areal density (ρR) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations, and burn truncation due to dynamically evolving failure modes may become visible for the first time. Test measurements of the PD-PMT at Atomic Weapons Establishment confirmed that design goals have been met. The PD-PMT provides dilation factors of 2 to 40× in 6 increments. The GCD-3 recently deployed at the NIF has been modified for coupling to a PD-PMT and will soon be making ultrafast measurements.

12.
Rev Sci Instrum ; 89(10): 10I148, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399772

ABSTRACT

Fusion reaction history and ablator areal density measurements for Inertial Confinement Fusion experiments at the National Ignition Facility are currently conducted using the Gamma Reaction History diagnostic (GRH_6m). Future Gas Cherenkov Detectors (GCDs) will ultimately provide ∼100x more sensitivity, reduce the effective temporal response from ∼100 to ∼10 ps, and lower the energy threshold from 2.9 to 1.8 MeV, relative to GRH_6m. The first phase toward next generation GCDs consisted of inserting the existing coaxial GCD-3 detector into a reentrant well which puts it within 4 m of the implosion. Reaction history and ablator gamma measurement results from this Phase I are discussed here. These results demonstrate viability for the follow-on Phases of (II) the use of a revolutionary new pulse-dilation photomultiplier tube to improve the effective measurement bandwidth by >10x relative to current PMT technology; and (III) the design of a NIF-specific "Super" GCD which will be informed by the assessment of the radiation background environment within the well described here.

13.
Rev Sci Instrum ; 89(6): 063506, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960515

ABSTRACT

A pulse-dilation photomultiplier tube (PD-PMT) with sub-20 ps temporal resolution has been developed for use with γ-ray-sensitive gas Cherenkov detectors at the National Ignition Facility to improve the diagnosis of nuclear fusion burn history and the areal density of the remaining capsule ablator. The pulse-dilation mechanism entails the application of a time-dependent, ramp waveform to a photocathode-mesh structure, introducing a time-dependent photoelectron accelerating potential. The electric field imparts axial velocity dispersion to outgoing photoelectrons. The photoelectron pulse is dilated as it transits a drift region prior to amplification in a microchannel plate and read out with a digital oscilloscope. We report the first measurements with the prototype PD-PMT demonstrating nominal <20 ps FWHM across a 400 ps measurement window and <30 ps FWHM for an extracted charge up to 300 pC. The output peak areas are linear to within 20% over 3 orders of magnitude of input intensity. 3D particle in cell simulations, which included space charge effects, have been carried out to investigate the device temporal magnification, resolution, and linearity.

14.
Rev Sci Instrum ; 87(11): 11E203, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910306

ABSTRACT

A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.

15.
Rev Sci Instrum ; 87(11): 11E732, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910331

ABSTRACT

The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ∼100 ps state-of-the-art photomultiplier tubes (PMT) to ∼10 ps Pulse Dilation PMT technology currently under development.

16.
Rev Sci Instrum ; 87(11): 11E311, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910406

ABSTRACT

The dilation x-ray imager (DIXI) [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010); S. R. Nagel et al., ibid. 83, 10E116 (2012); S. R. Nagel et al., ibid. 85, 11E504 (2014)] is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10 × improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method [J. Salmon et al., J. Math. Imaging Vision 48, 279294 (2014)] to improve the robustness of the DIXI data analysis. Here we present results on ignition-relevant experiments at the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P0, P2, and P4 Legendre modes, and their temporal evolution/swings).

17.
Rev Sci Instrum ; 87(11): 11D806, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910467

ABSTRACT

The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼1016. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

18.
Rev Sci Instrum ; 87(11): 11E201, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910489

ABSTRACT

We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 µm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 µm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

20.
Rev Sci Instrum ; 87(11): 11E202, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910532

ABSTRACT

We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

SELECTION OF CITATIONS
SEARCH DETAIL
...